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We investigate the bending properties of carbon nanoribbons by combining continuum elasticity theory and
tight-binding atomistic simulations. First, we develop a complete analysis of a given bended configuration
through continuum mechanics. Then, we provide by tight-binding calculations the value of the bending rigidity
in good agreement with recent literature. We discuss the emergence of a stretching field induced by the full
atomic-scale relaxation of the nanoribbon architecture. We further prove that such an in-plane strain field can
be decomposed into a first contribution due to the actual bending of the sheet and a second one due to edge
effects.
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I. INTRODUCTION

Graphene1 plays a unique role in materials science since it
is the mother structure of most carbon sp2 nanosystems of
current interest. By stacking, folding, or bending a graphene
sheet it is indeed possible to generate, respectively, graphite-
like systems, fullerene cages �pentagonal rings are here
needed as well� or nanotubes. In particular, the bending prop-
erties are critical in attaining the structural stability and mor-
phology for both suspended and supported graphene sheets,
and directly affect their electronic properties.2 Rippling of
pure graphene has been also observed with mesoscopic am-
plitude and wavelength, both for suspended monolayers3 and
sheets deposited on substrates such as silicon dioxide.4

Moreover, the bending properties play a central role in the
design of graphene-based or carbon nanotube-based devices,
such as, e.g., mechanical resonators.5,6 The bending features
of functionalized graphene sheets have been probed by
atomic force microscopy, observing that the folding behavior
is dominated by defects and functional groups.7 Finally,
bending ultimately governs the carbon nanotubes unzipping
process, recently used to produce narrow ribbons for
nanoelectronics.8 With the same technique, a distinct class of
carbon-based nanostructures, which combine nanoribbons
and nanotubes, has been introduced in order to obtain mag-
netoresistive devices.9

Within this scenario we frame the present investigation,
addressed to improve our fundamental understanding of the
bending properties of a one-atom thick carbon sheet. The
main goal is twofold: �i� to draw a thorough theoretical pic-
ture on bending, fully exploiting the elasticity theory and
providing an atomistic quantitative estimation of the corre-
sponding bending rigidity; �ii� to prove that the bending pro-
cess of a carbon nanoribbon is always associated with the
emergence of a �small� stretching, particularly close to the
edges. These results have been obtained by combining con-
tinuum elasticity theory and tight-binding atomistic simula-
tions �TB-AS�.

The conceptual development and actual exploitation of
our theoretical model proceeds through the following steps.
At first, by means of continuum mechanics we have obtained
the exact shape for a purely bended nanoribbon, by imposing
suitable boundary conditions. The bending rigidity is then

evaluated by TB-AS for several nanoribbons differing by
length and width. As a second step, we observed that, under
the above assumption of pure bending, the corresponding
rigidity must be a constant independent of the actual shape of
the sheet. Nevertheless by allowing full atomic-scale relax-
ation during bending, we rather found a geometry-dependent
rigidity, a feature that we have attributed to the onset of
stretching phenomena. Therefore, as final step, we have de-
veloped a procedure to discriminate between stretching and
bending energy, so providing a complete picture about the
mechanical behavior of graphene and also reconciling the
atomistic data with the continuum theory results.

The structure of the paper follows: in Sec. II we outline
the theoretical framework from both the continuum elasticity
theory and the tight-binding atomistic simulations. In Sec. III
we describe the results concerning the bending stiffness and
the interplay between stretching and bending. Finally, in Sec.
IV we draw the conclusions.

II. THEORETICAL FRAMEWORK

A. Continuum picture

The graphene strain energy density U �eV Å−2� is defined
as10,11

U =
1

2

E

1 + �
Tr��̂2� +

1

2

E�

1 − �2 �Tr��̂��2 +
1

2
��2H�2 − �̄K ,

�1�

where E �Nm−1� and � are the two-dimensional Young
modulus and the Poisson ratio, while � �eV� and �̄ �eV� are
the bending rigidity and the Gaussian rigidity, respectively.
The in-plane deformation �stretching� energy �given by the
first two terms in Eq. �1�� is described by the standard small
strain tensor �̂= 1

2 ��� u� +�� u�T�, being u� the displacement field.
On the other hand, the out of plane deformation �bending�
energy �given by the last two terms in Eq. �1�� is described
by the mean curvature H=

k1+k2

2 �m−1� and by the Gaussian
curvature K=k1k2 �m−2�, where k1 and k2 are the principal
curvatures at a given point on the surface.12 They are
straightforwardly given by k1=1 /R1 and k2=1 /R2, where R1
and R2 are the principal radii of curvature at that point. In the
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case of a continuum plate of thickness h made of an isotropic
and homogeneous material, the classical Kirchhoff theory
provides �= 1

12
Eh2

1−�2 and �̄= 1
12

Eh2

1+� �note that E=Yh, where Y is
the three-dimensional Young modulus�.10,11 For an infinitesi-
mally thin graphene monolayer such a theory does not apply
since the thickness h cannot be unambiguously defined and
the bending moment has simply a different physical origin.
While the bending moment for the Kirchhoff plate derives
from a compression/extension of the different material layers
forming the thickness h, in graphene it is due to the interac-
tions among orbitals pz which are affected by the bending
process. Therefore, the determination of � and �̄ for
graphene is a well-posed �and, to a large extent, still open�
problem, which is independent of the evaluation of E and
�.13

Our model system is a rectangular ribbon with length l
and width L �see Fig. 1�. The ribbon is bended without
stretching ��̂=0� along its width. The boundary conditions
consist in fixing the positions of the two parallel edges �with
length l� at a given distance a while the attack angles � is
free to relax. This configuration involves only one curvature
k1, leading to H=

k1

2 and K=0. By considering different val-
ues of a in the range �0,L� we obtained a set of differently
bended configurations. The elastic problem consists in find-
ing the sheet shape by minimizing the bending energy

Ub =� �
A

UdA =
1

2
�l�

0

L

k1
2ds , �2�

where A=Ll is the total area of the system. If the configura-
tion is described by the function z=z�x�, then we have k1
=z� / �1+ �z��2�3/2, where z�=dz /dx and z�=d2z /dx2. On the
other hand, ds=�gdx, where �g=�1+ �z��2. Therefore, Eq.
�2� assumes the explicit form

Ub =
1

2
�l�

0

a �z��2

�1 + �z��2�5/2dx . �3�

The problem consists in finding the curve z=z�x� minimizing
the energy functional in Eq. �4� under the constraint

�
0

a

�1 + �z��2dx = L �4�

enforcing the absence of any in-plane stretching.
By the application of the constrained variational

calculus14 we eventually obtain the final geometry in para-
metric representation �x�s� ,z�s��,

x

L
=

E�q� − E�am�K�q��1 − 2
s

L
	
,q	
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−
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L
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where s is the arc length �0�s�L�, q=sin�
2 is the elliptic

modulus, and � is the attack angle given by

a

L
= 2

E�q�
K�q�

− 1. �7�

The quantities E�q� and K�q� are the complete elliptic inte-
grals, defined as15,16

E�q� = F��

2
,q	, K�q� = E��

2
,q	 , �8�

where the functions F�v ,q� and E�v ,q� are incomplete ellip-
tic integrals of the first and second kind, respectively,15,16

F�v,q� = �
0

v d	

�1 − q2 sin2 	
,

E�v,q� = �
0

v
�1 − q2 sin2 	d	 . �9�

Moreover, by considering u=F�v ,q� we define the inverse
relation �with fixed modulus q� v=am�u�, which is called
Jacobi amplitude function. Further, cn�u�=cos v
=cos�am�u�� and sn�u�=sin v=sin�am�u�� are the Jacobi el-
liptic functions.16 Interesting enough, one can prove that
lima/L→0 �=130.709°, an universal value of the attack angle
found whenever a=0 or L is very large.

B. Atomistic simulations

The present TB-AS �Ref. 17� have been performed mak-
ing use of the sp3, orthogonal and next-neighbors tight-
binding representation by Xu et al.18 Such a total-energy
model has been implemented within the scheme given by
Goodwin et al.19 for the dependence of the TB hopping in-
tegrals and the pairwise potential on the interatomic separa-
tion.

Applications to molecular-dynamics studies of liquid car-
bon and small carbon clusters indicate that this model cor-
rectly describes carbon systems over a wide range of
environments.18 This TB representation has been also suc-
cessfully used to show that the surface of nanodiamond par-
ticles reconstructs in a fullerenelike manner, generating car-
bon clusters called bucky diamonds.20 Moreover, the growth

FIG. 1. �Color online� Bended ribbon with length l and width L
�red dashed line�. The parallel edges with length l are fixed at dis-
tance a while the attack angles � is free to relax.
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of nanostructures �linear, ring, and fullerenelike objects� in a
carbon plasma21 and the formation of carbon clusters �onion-
like and endohedral structures� from the condensation of liq-
uid droplets22 have been simulated by the present tight-
binding model. Finally, this parameterization has been
recently used for determining the nonlinear elastic moduli
governing the graphene stretching elasticity.23

The previous continuum analysis is useful both to create
the input configurations for atomistic calculations and to de-
fine the simulation protocol. The investigated system consists
in a nanoribbon formed by a perfect hexagonal carbon lat-
tice, having width L in the range 4–12 nm and length l im-
posed to obtain a simulation box containing a constant num-
ber of 
600 carbon atoms. Moreover, periodic boundary
conditions are assumed along the direction of the length l.
The length �width� is developed along the armchair �zigzag�
direction of the honeycomb lattice. Each nanoribbon is de-
formed as defined in Eqs. �5� and �6� in ten configurations
corresponding to different values of a. In any bended con-
figuration, all the interatomic distances are fixed at the equi-
librium value for flat graphene �so that no bond stretching is
for the moment allowed�. The bending rigidity has been
straightforwardly obtained as �= 2

lIUb with Ub given by Eq.
�2�, where the integral I=�0

Lk1
2ds is computed for the given

configuration. It is important to remark that the obtained
value for � must be independent of the actual configuration
since the deformation is a pure bending one.

III. RESULTS

Accordingly to the scheme outlined in the previous sec-
tion, we have first evaluated the �pure� bending energy as
Ub=Eo

bended−Eo
flat, where Eo

bended and Eo
flat represent the

TB-AS total energy of the bended �but not relaxed� and equi-
librium �flat� configurations, respectively. The atomistic re-
sults for � are reported in Fig. 2 �symbols� as function of the
a /L ratio and for different width L. We estimate an average
value �ave=1.40 eV. While the reported values of � �for
nanotubes� vary in the range 1
�
2 eV,24 we remark the
most reliable ab initio data �namely: �=1.40 eV �Ref. 13�
and �=1.46 eV �Ref. 25�� are in excellent agreement with
our prediction, a feature standing for the reliability of the
present computational procedure.

Although reassuring, the above picture must be refined in
order to properly take into account atomic-scale features.
Therefore, full relaxation of the internal degrees of freedom

of the bended systems is performed by zero-temperature
damped dynamics until interatomic forces resulted not larger
than 
10−5 eV /Å. We have so generated a set of configu-
rations where bending and stretching features are entangled.
During the relaxation, the positions of the atoms belonging
to the edges �i.e., atoms with x=0 or x=a, see Fig. 1� are
fixed and, therefore, the distance a between the edges re-
mained constant. Overall we observed that the geometry is
only marginally affected by relaxation as shown in Fig. 3.
Here we compare the attack angle � predicted from Eq. �7�
versus the ratio a /L with the corresponding values obtained
from the relaxed configurations. We note that, for a /L→0,
we obtain the universal value 130.709° as previously dis-
cussed. As a matter of fact, after the relaxation, the attack
angle � do not change and the maximum variation in L was
as little as 0.005 nm, corresponding to a variation in the
integral I smaller than 0.01%. Nevertheless, even for such
minor relaxations the energetics of the fully relaxed systems
is expected to sizably differ from the purely bended case
because of the extraordinary large value of the graphene
Young modulus.23 It is therefore important to provide a new
estimation of the bending energy for the fully relaxed con-
figurations.

Following the above argument, we evaluated the new
bending rigidity � by means of the energy Ub=Erelaxed

bended

−Erelaxed
flat and Eq. �2�, where Erelaxed

bended is the energy of a relaxed
bended ribbon and Erelaxed

flat is the energy of a flat ribbon after
a full relaxation �different from the energy of the infinite
graphene sheet because of the edge effects�. In this case, we
have found a variation in � upon a /L as shown in Fig. 4 �full
circles�. This result suggests that atomic-scale relaxations
upon bending have induced as expected an additional field of
in-plane stretching, which provides new energy contributions
as reported in Eq. �1�. It is interesting to observe that the
largest differences between the unrelaxed and relaxed con-
figurations are found for a /L�1. In fact, in this case the
forces exerted by the constraints �maintaining the distance a
between the edges� are almost parallel to the graphene sheet,
favoring the stretching emergence.

This intriguing result opens the problem of how to disen-
tangle bending and stretching features. As shown in Fig. 4,
this is especially important in the limit of small deforma-
tions, a situation of considerable practical interest. To this
aim we have defined a proof-of-concept computational pro-
cedure based on the virtual process of straightening �or un-
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FIG. 2. �Color online� Bending rigidity � obtained for purely
ribbons with several widths L. The average value is given by �ave
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FIG. 3. �Color online� The continuum results for the attack
angle � �full lines� are compared with the corresponding data pro-
vided by TB atomistic simulations �full symbols�.
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bending� of a given relaxed and bended ribbon: atoms are
projected from such a configuration onto a plane by conserv-
ing all the first next neighbors bond lengths and all the sec-
ond next neighbors planar angles. The process recovers a
planar configuration, still maintaining all the details about
any possible stretching �in-plane strain field�; the corre-
sponding energy Estraightened

flat is straightforwardly evaluated
by means of TB-AS. The bending rigidity � can be conse-
quently determined by using Ub=Erelaxed

bended −Estraightened
flat : the re-

sults are shown in Fig. 5 �crosses� where we also report � as
obtained by Ub=Eo

bended−Eo
flat �open circles�. The compari-

son points out a good agreement between the two different
approaches since stretching features are either at all non con-
sidered �open circles� or included in both the bended and flat
configurations �crosses� so as to compensate. It is interesting
to note that the constant trend of � versus a and L has been
found similar to Fig. 2. In other words, we have proved that
the evaluation of � through the energy term Ub=Erelaxed

bended

−Erelaxed
flat is not correct since it is corrupted by a strain energy

amount which is not directly related to the bending process.
The energy due to the sole stretching field �induced by the
bending process� can be accordingly defined as Estraightened

flat

−Erelaxed
flat . The demonstration that such an energetic contribu-

tion corresponds only to stretching relies on the fact that both
the terms Estraightened

flat and Erelaxed
flat have been evaluated on flat

ribbons through TB atomistic simulations.
A further evidence of the stretching emergence can be

derived from Fig. 6 where the strain is calculated along the

arc of length L �corresponding to the dashed line in Fig. 1�,
labeled by the coordinate s. We can calculate three strain
fields �ss

�b�, �ss
�e�, and �ss

�t� which are, respectively, defined as the
relative difference between: �i� the relaxed and straightened
configuration �energy Estraightened

flat � and the flat relaxed con-
figuration �energy Erelaxed

flat �; �ii� the flat relaxed configuration
�energy Erelaxed

flat � and the flat unrelaxed configuration �energy
Eo

flat�; �iii� the relaxed and straightened configuration �energy
Estraightened

flat � and the flat unrelaxed configuration �energy
Eo

flat�. While the strain �ss
�b� is only due to bending, the term

�ss
�e� is induced by the presence of the edges �finite nanorib-

bon� in a flat configuration. The quantity �ss
�t� represents the

total strain induced by the relaxation of the bended ribbon
with reference to the ideal graphene sheet. We observed with
good accuracy the validity of the relation �ss

�t�=�ss
�b�+�ss

�e�, fur-
ther proving that the total strain in a bended ribbon is the
sum of two different contributions: the first one ��ss

�b�� is di-
rectly related to the bending process and the second one
��ss

�e�� is originated by edges effects, i.e., by the finite size of
the nanoribbon. Although the first term seems to be quite
negligible with respect to the second one, the previous ener-
getic analysis reveals that both contributions are essential in
order to explain the discrepancies between continuum and
atomistic results.

IV. CONCLUSIONS

In conclusion, we offered robust arguments suggesting
that the correct value for the bending rigidity of a carbon
nanoribbon corresponds to �=1.40 eV, as calculated either
through Ub=Eo

bended−Eo
flat or through Ub=Erelaxed

bended

−Estraightened
flat . On the other hand, the relation Ub=Erelaxed

bended

−Erelaxed
flat leads to incorrect results because of the emergence

of a stretching field �ss
�t�. We have further proved that such an

in-plane strain field can be decomposed in a first contribution
�ss

�b� due to the actual bending and a second one �ss
�e� due to the

edges effects.

0.00
0.25

0.50
0.75

1.00 4 6 8 10 12

−3
−2
−1

0
1
2

be
nd

in
g

ri
gi

di
ty

κ
[e

V
]

a/L
L [nm]

FIG. 4. �Color online� Bending rigidity � computed by means of
Ub=Erelaxed

bended −Erelaxed
flat �full circles�. Straight lines correspond to the

average value �ave=1.40 eV as deduced from Fig. 1.

0.00
0.25

0.50
0.75

1.00 4 6 8 10 12

1.37
1.38
1.39
1.40
1.41
1.42

be
nd

in
g

ri
gi

di
ty

κ
[e

V
]

a/L
L [nm]

FIG. 5. �Color online� Comparison between the bending rigidity
� computed through Ub=Eo

bended−Eo
flat �open circles� and Ub

=Erelaxed
bended −Estraightened

flat �crosses�. The maximum deviation is less
than the 1.5%.

0.0

0.5

1.0

-0.04

-0.02

0.00

0.02

ε(b
)

ss
[%

]

0.0

0.5

1.0

y
[n

m
]

0.00

0.30

0.60

0.90

ε(e
)

ss
[%

]

0.0

0.5

1.0

0.00

0.30

0.60

0.90

ε(t
)

ss
[%

]

0 2 4 6 8 10 12

0 2 4 6 8 10 12

s [nm]

FIG. 6. �Color online� �ss
�b� �strain induced by the bending�, �ss

�e�

�strain induced by the edges�, and �ss
�t� �total strain� versus s �red

curves�. The gray scale map in background represents the same
quantities in the sy space for L=12 nm and a /L=0.95.

CADELANO, GIORDANO, AND COLOMBO PHYSICAL REVIEW B 81, 144105 �2010�

144105-4



ACKNOWLEDGMENTS

S.G. and L.C. acknowledge financial support by the Cy-
bersar consortium �Cagliari, Italy� and by the MATHMAT

project �Università di Padova, Italy�, respectively. We also
acknowledge Cybersar �Cagliari, Italy� and CASPUR
�Rome, Italy� for computational support.

*luciano.colombo@dsf.unica.it
1 A. K. Geim and K. S. Novoselov, Nature Mater. 6, 183 �2007�.
2 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,

and A. K. Geim, Rev. Mod. Phys. 81, 109 �2009�.
3 J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T.

J. Booth, and S. Roth, Nature �London� 446, 60 �2007�.
4 M. Ishigami, J. H. Chen, W. G. Cullen, M. S. Fuhrer, and E. D.

Williams, Nano Lett. 7, 1643 �2007�.
5 J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank,

D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L.
McEuen, Science 315, 490 �2007�.

6 J. Atalaya, A. Isacsson, and J. M. Kinaret, Nano Lett. 8, 4196
�2008�.

7 H. C. Schniepp, K. N. Kudin, J.-L. Li, R. K. Prud’homme, R.
Car, D. A. Saville, and I. A. Aksay, ACS Nano 2, 2577 �2008�.

8 D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda,
A. Dimiev, B. K. Price, and J. M. Tour, Nature �London� 458,
872 �2009�.

9 H. Santos, L. Chico, and L. Brey, Phys. Rev. Lett. 103, 086801
�2009�.

10 A. E. Green and W. Zerna, Theoretical Elasticity �Oxford Uni-
versity Press, Oxford, 1954�.

11 L. D. Landau and E. M. Lifschitz, Theory of Elasticity �Butter-
worth Heinemann, Oxford, 1986�.

12 M. P. do Carmo, Differential Geometry of Curves and Surfaces

�Prentice-Hall, New York, 1976�.
13 Q. Lu, M. Arroyo, and R. Huang, J. Phys. D 42, 102002 �2009�.
14 V. L. Berdichevsky, Variational Principles of Continuum Me-

chanics: I. Fundamentals and II. Applications �Springer-Verlag,
Berlin, 2009�.

15 I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and
Products �Academic Press, San Diego, 1965�.

16 M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions �Dover Publication, New York, 1970�.

17 L. Colombo, Riv. Nuovo Cimento 28, 1 �2005�.
18 C. H. Xu, C. Z. Wang, C. T. Chan, and K. M. Ho, J. Phys.:

Condens. Matter 4, 6047 �1992�.
19 L. Goodwin, A. J. Skinner, and D. G. Pettifor, Europhys. Lett. 9,

701 �1989�.
20 J.-Y. Raty, G. Galli, C. Bostedt, T. W. van Buuren, and L. J.

Terminello, Phys. Rev. Lett. 90, 037401 �2003�.
21 Y. Yamaguchi, L. Colombo, P. Piseri, L. Ravagnan, and P. Mi-

lani, Phys. Rev. B 76, 134119 �2007�.
22 M. P. Bogana and L. Colombo, Appl. Phys. A 86, 275 �2007�.
23 E. Cadelano, P. L. Palla, S. Giordano, and L. Colombo, Phys.

Rev. Lett. 102, 235502 �2009�.
24 Z. C. Tu and Z. C. Ou-Yang, J. Comput. Theor. Nanosci. 5, 1192

�2008�.
25 K. N. Kudin, G. E. Scuseria, and B. I. Yakobson, Phys. Rev. B

64, 235406 �2001�.

INTERPLAY BETWEEN BENDING AND STRETCHING IN… PHYSICAL REVIEW B 81, 144105 �2010�

144105-5

http://dx.doi.org/10.1038/nmat1849
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1038/nature05545
http://dx.doi.org/10.1021/nl070613a
http://dx.doi.org/10.1126/science.1136836
http://dx.doi.org/10.1021/nl801733d
http://dx.doi.org/10.1021/nl801733d
http://dx.doi.org/10.1021/nn800457s
http://dx.doi.org/10.1038/nature07872
http://dx.doi.org/10.1038/nature07872
http://dx.doi.org/10.1103/PhysRevLett.103.086801
http://dx.doi.org/10.1103/PhysRevLett.103.086801
http://dx.doi.org/10.1088/0022-3727/42/10/102002
http://dx.doi.org/10.1088/0953-8984/4/28/006
http://dx.doi.org/10.1088/0953-8984/4/28/006
http://dx.doi.org/10.1209/0295-5075/9/7/015
http://dx.doi.org/10.1209/0295-5075/9/7/015
http://dx.doi.org/10.1103/PhysRevLett.90.037401
http://dx.doi.org/10.1103/PhysRevB.76.134119
http://dx.doi.org/10.1007/s00339-006-3758-y
http://dx.doi.org/10.1103/PhysRevLett.102.235502
http://dx.doi.org/10.1103/PhysRevLett.102.235502
http://dx.doi.org/10.1166/jctn.2008.017e
http://dx.doi.org/10.1166/jctn.2008.017e
http://dx.doi.org/10.1103/PhysRevB.64.235406
http://dx.doi.org/10.1103/PhysRevB.64.235406

